WikiDer > Точка конгруэнтных изосцелизаторов

Congruent isoscelizers point

В геометрия в точка конгруэнтных изоселизаторов особая точка, связанная с самолет треугольник. Это центр треугольника и он указан как X (173) в Кларк Кимберлингс Энциклопедия центров треугольников. Этот момент был введен Питером Иффом в 1989 году при изучении геометрии треугольника.[1][2]

Определение

п1Q1 = п2Q2 = п3Q3

An изоселизатор угла A в треугольнике ABC представляет собой прямую, проходящую через точки п1 и Q1, куда п1 лежит на AB и Q1 на AC, такой, что треугольник AP1Q1 представляет собой равнобедренный треугольник. Изоцелизатор угла A - это линия, перпендикулярная биссектрисе угла A.

Позволять ABC быть любым треугольником. Позволять п1Q1, п2Q2, п3Q3 быть изоселизаторами углов А, B, C соответственно, так что все они имеют одинаковую длину. Затем для уникальной конфигурации три изоселизатора п1Q1, п2Q2, п3Q3 совпадают. Точка совпадения - это точка конгруэнтных изоселизаторов треугольника ABC.[1]

Характеристики

Строительство точки конгруэнтных изоселизаторов. A'B'C ' это внутренний треугольник треугольника ABC и A '' B '' C '' это внутренний треугольник треугольника A'B'C ' .
(cos ( B/ 2) + cos ( C/ 2) - cos (А/ 2 '): cos ( C/ 2) + cos ( А/ 2) - cos (B/ 2 '): cos ( А/ 2) + cos ( B/ 2) - cos (C/2') )
= (загар ( А/ 2) + сек ( А/ 2): загар ( B /2) + сек ( B/ 2): загар ( C/ 2) + сек ( C/2 ) )
  • В сенсорный треугольник внутрисенсорного треугольника треугольника ABC является перспектива в треугольник ABC, а точка конгруэнтных изоселизаторов - это перспективный. Этот факт может быть использован для определения геометрическими построениями точки конгруэнтного изоселизатора любого заданного треугольника. ABC.[1]

Смотрите также

Рекомендации

  1. ^ а б c d Кимберлинг, Кларк. "X (173) = конгруэнтная точка изоселизатора". Энциклопедия центров треугольников. Архивировано из оригинал 19 апреля 2012 г.. Получено 3 июн 2012.
  2. ^ Кимберлинг, Кларк. «Точка конгруэнтных изоселизаторов». Получено 3 июн 2012.