WikiDer > Модульное оригами
Эта статья включает в себя список общих Рекомендации, но он остается в основном непроверенным, потому что ему не хватает соответствующих встроенные цитаты. (Май 2009 г.) (Узнайте, как и когда удалить этот шаблон сообщения) |
Модульное оригами или же блок оригами это складывание бумаги техника, которая использует два или более листов бумаги для создания более крупной и сложной структуры, чем это было бы возможно при использовании техники оригами из одной части. Каждый отдельный лист бумаги складывается в модуль или блок, а затем модули собираются в интегрированную плоскую форму или трехмерную структуру, обычно путем вставки клапанов в карманы, созданные в процессе складывания. Эти вставки создают напряжение или трение, которые удерживают модель вместе.
Определение и ограничения
Модульное оригами можно отнести к подмножеству составного оригами, поскольку отказ от правила ограничения одним листом бумаги. Тем не менее, все остальные правила оригами по-прежнему применяются, поэтому использование клея, ниток или любого другого крепления, не являющегося частью листа бумаги, обычно неприемлемо в модульном оригами.
Дополнительные ограничения, которые отличают модульное оригами от других форм составного оригами, заключаются в использовании множества идентичных копий любого сложенного элемента и соединении их вместе симметричным или повторяющимся образом для завершения модели. Существует распространенное заблуждение, согласно которому все составные части оригами рассматриваются как модульные.
Больше одного тип модуля все еще можно использовать. Обычно это означает использование отдельных соединяющих устройств, скрытых от глаз, для скрепления частей конструкции вместе. Как правило, не рекомендуется любое другое использование.
История
Первое историческое свидетельство модульного дизайна оригами содержится в японской книге Хаято Охока, опубликованной в 1734 году под названием Ранма Зушики. Он содержит принт, на котором изображена группа традиционных моделей оригами, одна из которых представляет собой модульный куб. Куб изображен дважды (под немного разными углами) и обозначен в сопроводительном тексте как Таматебако (волшебный сундук с сокровищами). Исао Хонда Мир Оригами (опубликовано в 1965 году), похоже, имеет ту же модель, где он называется «кубический ящик». Шесть модулей, необходимых для этого дизайна, были разработаны на основе традиционной японской бумажной коробки, широко известной как Menko. Каждый модуль образует одну грань готового куба.
Есть несколько других традиционных японских модульных конструкций, в том числе шары из сложенных бумажных цветов, известные как кусудама, или медицинские шарики. Эти конструкции не интегрированы и обычно нанизываются вместе с помощью ниток. Период, термин кусудама иногда довольно неточно используется для описания любой трехмерной модульной конструкции оригами, напоминающей шар.
Также есть несколько модульных конструкций в Китайская раскладушка традиции, особенно пагода (от Майинг Сунг) и лотос, сделанный из Бумага Joss.
Однако большинство традиционных дизайнов представляют собой цельные части, и возможности, заложенные в идее модульного оригами, не исследовались дальше до 1960-х годов, когда эта техника была изобретена заново. Роберт Нил в США и позже Мицунобу Сонобе в Японии. 1970-е годы стали свидетелями внезапного периода интереса и развития модульного оригами как отдельной отдельной области, что привело к его нынешнему статусу в складывании оригами. Одна примечательная фигура - Стив Кримболл, который обнаружил потенциал в Кубический блок Sonobe и продемонстрировали, что его можно использовать для изготовления альтернативных многогранных фигур, включая шар из 30 частей.[1]
С тех пор техника модульного оригами получила широкое распространение и развитие, и теперь в этом репертуаре были разработаны тысячи дизайнов.
Известные модульные бумажные папки включают: Роберт Нил, Sonobe, Tomoko Fuse, Кунихико Касахара, Том Халл, Хайнц Штробль и Екатерина Лукашева.
Типы
Модульные формы оригами могут быть плоскими или объемными. Плоские формы обычно полигоны (иногда называемые подставками), звезды, роторы и кольца. Трехмерные формы имеют тенденцию быть правильные многогранники или мозаики простых многогранников.
С помощью техники модульного оригами можно создавать коробки с крышками, которые не только красивы, но и полезны в качестве контейнеров для подарков. Многие примеры таких ящиков показаны на Сказочные Коробки Оригами к Tomoko Fuse.
Есть некоторые модульные оригами, приближенные к фракталы, Такие как Губка менгера.Макромодульное оригами - это форма модульного оригами, в которой готовые сборки сами используются в качестве строительных блоков для создания более крупных интегрированных структур. Такие конструкции описаны в Tomoko Fuseкнига Блок оригами - многомерные преобразования (опубликовано в 1990 г.).
Системы моделирования
Предпоследний модуль Роберта Нила
Нил разработал систему моделирования равносторонние многогранники на основе модуля с переменной вершина углы. Каждый модуль имеет два кармана и две петлицы на противоположных сторонах. Угол каждой вкладки можно изменить независимо от другой вкладки. В каждый карман можно вставлять язычки под любым углом. Наиболее распространенные углы образуют многоугольные грани:
- 60 градусов (треугольник)
- 90 градусов (квадрат)
- 108 градусов (пятиугольник)
- 120 градусов (шестиугольник)
Каждый модуль соединяется с другими в вершинах многогранника, образуя многоугольную грань. выступы образуют углы на противоположных сторонах кромки. Например, сборка из трех углов треугольника образует треугольник, наиболее устойчивую конфигурацию. По мере увеличения внутреннего угла для квадратов, пятиугольников и т. Д. Устойчивость уменьшается.
Многие многогранники требуют разных смежных многоугольников. например, пирамида имеет одну квадратную грань и четыре треугольных грани. Для этого требуются гибридные модули или модули, имеющие разные углы. Пирамида состоит из восьми модулей, четырех модулей в виде квадрата-треугольника и четырех модулей в виде треугольника-треугольника.
Возможны другие многоугольные грани, изменяя угол в каждом углу. Модули Нила могут образовывать любой равносторонний многогранник, в том числе имеющие ромбический лица, как ромбический додекаэдр.
Модуль Мухопадхьяй
Модуль Мухопадхьяй может образовывать любой равносторонний многогранник. Каждая единица имеет среднюю складку, которая образует край, и треугольные крылья, которые образуют смежные звёздчатые грани. Например, кубооктаэдрическая сборка состоит из 24 единиц, поскольку кубооктаэдр имеет 24 ребра. бипирамиды возможны, складывая центральную складку на каждом модуле наружу или выпукло, а не внутрь или вогнутую, как в случае икосаэдр и другие звездчатые многогранники. Модуль Mukhopadhyay лучше всего работает при склейке, особенно для многогранников с большим количеством сторон.
Примечания и ссылки
Библиография
- Tomoko Fuse (1990). Юнит оригами: многомерные трансформации. Публикации Японии. ISBN 0-87040-852-6.
- Tomoko Fuse (1998). Сказочные Коробки Оригами. Япония Publications Trading. ISBN 0870409786.
внешняя ссылка
Викискладе есть медиафайлы по теме Модульное оригами. |
- 3dOrigamiArt.com Узнайте, как 3D оригами, учебные пособия и сеть художников.
- [1] Видеоуроки по 3D оригами от Артура Вершигоры.
- Кусудама
- Фотогалерея и инструкции по складыванию многогранников и вариаций
- Изображение Губки Менгера в оригами
- Страница тетраэдра оригами
- Оригами Геосфера Бумажная модель геодезической сферы.
- Сверхпростой модуль равнобедренного треугольника Мухопадхая
- Предпоследнее модульное оригами Джеймса С. Планка
- Модуль Oxi от Михала Космульского
- Кусудама мне! Кусудамы Лукашевой Екатерины, а также схемы и учебные пособия
- Бумажные структуры Кристины и Войтека Бурчиков
- Кусудама Михаила Пузакова и Людмилы Пузаковой: модели, инструкция складывания, история, геометрия