WikiDer > Нормально гиперболическое инвариантное многообразие
А нормально гиперболическое инвариантное многообразие (NHIM) является естественным обобщением гиперболическая неподвижная точка и гиперболический набор. Эвристически различие можно описать следующим образом: Для многообразия чтобы быть обычно гиперболическим, мы можем предположить, что динамика сам по себе нейтрален по сравнению с динамикой поблизости, что недопустимо для гиперболического набора. NHIMs были введены Нил Фенихель в 1972 г.[1] В этой и последующих статьях[2][3] Фенихель доказывает, что NHIMs обладают стабильными и неустойчивыми многообразиями и, что более важно, NHIMs и их устойчивые и неустойчивые многообразия сохраняются при малых возмущениях. Таким образом, в задачах, связанных с теорией возмущений, существуют инвариантные многообразия с определенными свойствами гиперболичности, которые, в свою очередь, можно использовать для получения качественной информации о динамической системе.[4]
Определение
Позволять M быть компактный гладкое многообразие, ж: M → M а диффеоморфизм, и Df: TM → TM то дифференциал из ж. An ж-инвариантный подмногообразие Λ из M считается нормально гиперболическое инвариантное многообразие если ограничение на Λ касательного пучка M допускает разбиение на сумму трех Df-инвариантные подрасслоения, одно из которых является касательным расслоением , остальные стабильный пакет и нестабильная связка и обозначен Es и Eты, соответственно. Что касается некоторых Риманова метрика на M, ограничение Df к Es должно быть сокращение, а ограничение Df к Eты должен быть расширением и должен быть относительно нейтральным . Таким образом, существуют постоянные и c > 0 такой, что
и
Смотрите также
- Стабильный коллектор
- Центральный коллектор
- Гиперболическая фиксированная точка
- Гиперболический набор
- Гиперболический Лагранжевы когерентные структуры
Рекомендации
- ^ Фенихель, Н. (1972). «Постоянство и гладкость инвариантных многообразий для потоков». Indiana Univ. Математика. J. 21 (3): 193–226. Дои:10.1512 / iumj.1971.21.21017.
- ^ Фенихель, Н. (1974). «Асимптотическая устойчивость с условиями скорости». Indiana Univ. Математика. J. 23 (12): 1109–1137. Дои:10.1512 / iumj.1974.23.23090.
- ^ Фенихель, Н. (1977). «Асимптотическая устойчивость со скоростными условиями II». Indiana Univ. Математика. J. 26 (1): 81–93. Дои:10.1512 / iumj.1977.26.26006.
- ^ А. Каток, Б. ХассельблаттВведение в современную теорию динамических систем, Издательство Кембриджского университета (1996), ISBN 978-0521575577
- М. В. Хирш, К. С. Пью и М. Шуб Инвариантные многообразия, Springer-Verlag (1977), ISBN 978-3540081487 Дои:10.1007 / BFb0092042