WikiDer > Теплосодержание океана - Википедия
В океанография и климатология, теплосодержание океана (OHC) - это термин для энергии, поглощаемой океаном, которая хранится как внутренняя энергия или энтальпия. Изменения теплосодержания океана играют важную роль в повышение уровня моря, потому что тепловое расширение.
На потепление океана приходится 90% накопления энергии от глобальное потепление с 1971 по 2010 гг.[1] По оценкам, около одной трети этого дополнительного тепла распространяется на глубину ниже 700 метров.[2] Помимо прямого воздействия теплового расширения, потепление океана способствует ускорению таяния льда во фьордах Гренландии. [3] и антарктические ледяные щиты.[4] Более теплые океаны также ответственны за обесцвечивание кораллов.[5]
Определение и измерение
Поверхностная плотность теплосодержания океана между двумя уровнями глубины определяется с помощью определенный интеграл:[6]
куда является морская вода плотность, это удельная теплоемкость морской воды, h2 - нижняя глубина, h1 - верхняя глубина, - температурный профиль. В Единицы СИ, имеет единицы Дж · м−2. Интегрирование этой плотности по океанскому бассейну или всему океану дает общее теплосодержание, как показано на рисунке справа. Таким образом, общее теплосодержание является произведением плотности, удельной теплоемкости и объемный интеграл температуры в рассматриваемой трехмерной области океана.
Теплосодержание океана можно оценить с помощью измерений температуры, полученных с помощью Бутылка Нансена, АРГО поплавок, или же акустическая томография океана. В Проект базы данных Мирового океана это самая большая база данных профилей температуры во всех океанах мира.
Теплосодержание верхнего слоя океана в большинстве регионов Северной Атлантики определяется конвергенцией переноса тепла (место, где встречаются океанические течения) без значительных изменений в соотношении температуры и солености.[7]
Недавние изменения
В нескольких исследованиях, проведенных в последние годы, было обнаружено, что содержание НУ в глубоководных и верхних слоях океана увеличивается на несколько десятилетий, и объясняется поглощение тепла антропогенное потепление.[8] Исследования на основе АРГО указать, что поверхность океана ветры, особенно субтропический пассат в Тихий океан, изменить вертикальное распределение тепла океана.[9] Это приводит к изменениям среди Океанские течения, и увеличение субтропический переворот, что также связано с Эль-Ниньо и Ла-Нинья явление. В зависимости от стохастических колебаний естественной изменчивости в годы Ла-Нинья примерно на 30% больше тепла из верхнего слоя океана переносится в более глубокие слои океана. Модельные исследования показывают, что Океанские течения переносят больше тепла в более глубокие слои в годы Ла-Нинья после изменений ветровой циркуляции.[10][11] Годы с повышенным поглощением тепла океаном были связаны с отрицательными фазами междекадное тихоокеанское колебание (IPO).[12] Это представляет особый интерес для ученых-климатологов, которые используют данные для оценки поглощение тепла океаном.
Исследование, проведенное в 2015 году, пришло к выводу, что повышение теплосодержания океана в Тихом океане было компенсировано резким распределением НУ в Индийском океане.[13]
Смотрите также
Рекомендации
- ^ AR5 WG1 МГЭИК (2013 г.). «Резюме для политиков» (PDF). www.climatechange2013.org. Получено 15 июля 2016.
- ^ "Исследование: глубоководные воды океана удерживают в ловушке огромные запасы тепла". Климат Центральный. 2016.
- ^ Черч, J.A. (2013). «Изменение уровня моря». В Межправительственной группе экспертов по изменению климата (ред.). Изменение уровня моря, стр. 1137-1216.. Изменение климата 2013 - Основа физических наук: Вклад Рабочей группы I в Пятый оценочный доклад Межправительственной группы экспертов по изменению климата. С. 1137–1216. Дои:10.1017 / cbo9781107415324.026. ISBN 9781107415324. Получено 2019-02-05.
- ^ Дженкинс, Адриан; и другие. (2016). «Десятилетнее воздействие океана и реакция антарктического ледяного щита: уроки моря Амундсена | Океанография». tos.org. Получено 2019-02-05.
- ^ «Большой Барьерный риф: разоблаченная катастрофа». Хранитель. 6 июня 2016.
- ^ Дейкстра, Хенк А. (2008). Динамическая океанография ([Корр. 2-е изд.] Ред.). Берлин: Springer Verlag. п. 276. ISBN 9783540763758.
- ^ Сирпа Хаккинен, Питер Б. Райнс и Дениз Л. Уортен (2015). «Изменчивость теплосодержания в северной части Атлантического океана в океанских реанализах». Geophys Res Lett. 42 (8): 2901–2909. Bibcode:2015GeoRL..42.2901H. Дои:10.1002 / 2015GL063299. ЧВК 4681455. PMID 26709321.CS1 maint: использует параметр авторов (связь)
- ^ Авраам; и другие. (2013). «Обзор наблюдений за температурой мирового океана: последствия для оценок теплосодержания океана и изменения климата». Обзоры геофизики. 51 (3): 450–483. Bibcode:2013RvGeo..51..450A. CiteSeerX 10.1.1.594.3698. Дои:10.1002 / rog.20022.
- ^ Бальмаседа, Тренберт и Келлен (2013). «Отличительные климатические сигналы в повторном анализе теплосодержания глобального океана». Письма о геофизических исследованиях. 40 (9): 1754–1759. Bibcode:2013GeoRL..40.1754B. Дои:10.1002 / гр.50382. Сочинение В архиве 2015-02-13 в Wayback Machine
- ^ Meehl; и другие. (2011). «Основанные на модели доказательства поглощения тепла глубоководными слоями океана во время периодов перерыва в температуре поверхности». Природа Изменение климата. 1 (7): 360–364. Bibcode:2011NatCC ... 1..360M. Дои:10.1038 / nclimate1229.
- ^ Роб Живопись (2 октября 2011 г.). «Глубокий океан нагревается, когда глобальные температуры поверхности падают». SkepticalScience.com. Получено 15 июля 2016.
- ^ Роб Живопись (24 июня 2013). «Надвигающийся климатический сдвиг: вернется ли океанское тепло, чтобы преследовать нас?». SkepticalScience.com. Получено 15 июля 2016.
- ^ Сан-Ки Ли, Вонсан Парк, Молли О. Барингер, Арнольд Л. Гордон, Брюс Хубер и Янюн Лю (18 мая 2015 г.). «Тихоокеанское происхождение резкого увеличения теплосодержания Индийского океана во время перерыва в потеплении» (PDF). Природа Геонауки. 8 (6): 445–449. Bibcode:2015НатГе ... 8..445л. Дои:10.1038 / ngeo2438.CS1 maint: использует параметр авторов (связь)
- Ченг Л. Дж., Чжу Дж. (2014). «Артефакты в вариациях теплосодержания океана, вызванные изменениями системы наблюдений». Письма о геофизических исследованиях. 41 (20): 7276–7283. Bibcode:2014GeoRL..41.7276C. Дои:10.1002 / 2014GL061881.