WikiDer > Кубико-икосаэдрические соты - Википедия
Кубико-икосаэдрические соты | |
---|---|
Тип | Компактные однородные соты |
Символ Шлефли | {(4,3,5,3)} или {(3,5,3,4)} |
Диаграмма Кокстера | или же |
Клетки | {4,3} {3,5} г {4,3} |
Лица | треугольник {3} квадрат {4} |
Фигура вершины | икосододекаэдр |
Группа Коксетера | [(5,3,4,3)] |
Характеристики | Вершинно-транзитивный, реберный транзитивный |
в геометрия из гиперболическое 3-пространство, то кубико-икосаэдрические соты компактная форма соты, построенный из икосаэдр, куб, и кубооктаэдр клетки, в икосододекаэдр вершина фигуры. Он имеет однокольцевую диаграмму Кокстера, , и назван по двум своим обычным ячейкам.
А геометрические соты это заполнение пространства из многогранник или многомерный клетки, чтобы не было зазоров. Это пример более общего математического черепица или же мозаика в любом количестве измерений.
Соты обычно строятся из обычных Евклидово ("плоское") пространство, как и выпуклые однородные соты. Они также могут быть построены в неевклидовы пространства, Такие как гиперболические однородные соты. Любой конечный равномерный многогранник можно спроецировать на его окружающая сфера образовывать однородные соты в сферическом пространстве.
Изображений
В центре икосаэдра |
Смотрите также
Рекомендации
- Coxeter, Правильные многогранники, 3-й. изд., Dover Publications, 1973. ISBN 0-486-61480-8. (Таблицы I и II: Правильные многогранники и соты, стр. 294–296)
- Coxeter, Красота геометрии: двенадцать эссе, Dover Publications, 1999 г. ISBN 0-486-40919-8 (Глава 10: Обычные соты в гиперболическом пространстве, Сводные таблицы II, III, IV, V, стр. 212-213)
- Джеффри Р. Уикс Форма космоса, 2-е издание ISBN 0-8247-0709-5 (Глава 16-17: Геометрии на трехмерных многообразиях I, II)
- Норман Джонсон Равномерные многогранники, Рукопись
- N.W. Джонсон: Теория однородных многогранников и сот, Кандидат наук. Диссертация, Университет Торонто, 1966 г.
- N.W. Джонсон: Геометрии и преобразования, (2018) Глава 13: Гиперболические группы Кокстера