WikiDer > Развитие (дифференциальная геометрия) - Википедия
В классическом дифференциальная геометрия, разработка относится к простой идее прокатки одного гладкого поверхность над другим в Евклидово пространство. Например, касательная плоскость на поверхность (например, сфера или цилиндр) на точка можно катать по поверхности, чтобы получить касательную плоскость в других точках.
Характеристики
Тангенциальный контакт между поверхностями, катящимися друг по другу, обеспечивает связь между точками на двух поверхностях. Если это отношение (возможно, только в местный смысл) а биекция между поверхностями, то эти две поверхности называются развивающийся друг на друга или события друг друга. Иными словами, переписка дает изометрия, локально, между двумя поверхностями.
В частности, если одна из поверхностей является плоскостью, то другая называется разворачивающаяся поверхность: таким образом, развертывающаяся поверхность - это поверхность, которая локально изометрична плоскости. Цилиндр разворачивающийся, а шар - нет.
Плоские соединения
Дальнейшее развитие можно обобщить, используя плоские соединения. С этой точки зрения катание касательной плоскости по поверхности определяет аффинная связь на поверхности (это пример параллельный транспорт вдоль изгиб), а разворачивающаяся поверхность - такая, для которой это соединение является плоским.
В целом любая квартира Картановое соединение на многообразие определяет развитие этого многообразия на модельное пространство. Пожалуй, самый известный пример - разработка конформно плоский п-многообразия, в которых модельное пространство является п-сфера. Развитие конформно плоского многообразия - это конформный локальный диффеоморфизм от универсальный чехол коллектора к п-сфера.
Неразвивающиеся поверхности
К классу поверхностей двойной кривизны (неразвертываемые поверхности) относятся объекты, которые нельзя просто развернуть (развернуть). Такие поверхности можно построить только приближенно при некоторых искажениях линейных элементов поверхности (см. Метод растянутой сетки)
Смотрите также
Рекомендации
- Шарп, Р.В. (1997). Дифференциальная геометрия: Картановское обобщение Эрлангенской программы Клейна. Спрингер-Верлаг, Нью-Йорк. ISBN 0-387-94732-9.