WikiDer > Усеченные 7-симплексные соты

Omnitruncated 7-simplex honeycomb
Усеченные 7-симплексные соты
(Нет изображения)
ТипРавномерные соты
СемьяПростые усеченные соты
Символ Шлефли{3[8]}
Диаграммы Кокстера – ДынкинаCDel node 1.pngCDel split1.pngУзлы CDel 11.pngCDel 3ab.pngУзлы CDel 11.pngCDel 3ab.pngУзлы CDel 11.pngCDel split2.pngCDel node 1.png
6-гранные типыт0123456{3,3,3,3,3,3}
Фигура вершиныУсеченные 7-симплексные соты verf.png
Irr. 7-симплекс
Симметрия×16, [8[3[8]]]
Характеристикивершинно-транзитивный

В семимерный Евклидова геометрия, то усеченные 7-симплексные соты заполняет пространство мозаика (или же соты). Он полностью состоит из омниусеченный 7-симплексный грани.

Грани всего усеченные простые соты называются пермутаэдры и может быть размещен в п + 1 пространство с целыми координатами, перестановками целых чисел (0,1, .., n).

А7* решетка

А*
7
решетка (также называемая A8
7
) является объединением восьми А7 решетки, и имеет расположение вершин к двойным сотам полностью усеченных 7-симплексных сот, и, следовательно, Ячейка Вороного этой решетки является омниусеченный 7-симплексный.

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngУзлы CDel 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngУзлы CDel 01lr.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngУзлы CDel 10lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngУзлы CDel 01lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngУзлы CDel 10lru.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngУзлы CDel 01lr.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png = двойной CDel node 1.pngCDel split1.pngУзлы CDel 11.pngCDel 3ab.pngУзлы CDel 11.pngCDel 3ab.pngУзлы CDel 11.pngCDel split2.pngCDel node 1.png.

Связанные многогранники и соты

Эти соты - одна из 29 уникальных однородных сот[1] построенный Группа Кокстера, сгруппированные по их расширенной симметрии колец внутри правильный восьмиугольник диаграмма:

Смотрите также

Обычные и однородные соты в 7-м пространстве:

Примечания

  1. ^ Вайсштейн, Эрик В. "Ожерелье". MathWorld., OEIS последовательность A000029 30-1 случаев, пропуская один с нулевыми отметками

Рекомендации

  • Норман Джонсон Равномерные многогранники, Рукопись (1991)
  • Калейдоскопы: Избранные произведения Х.С.М. Coxeter, отредактированный Ф. Артуром Шерком, Питером Макмалленом, Энтони С. Томпсоном, Азией Ивичем Вайс, публикацией Wiley-Interscience, 1995, ISBN 978-0-471-01003-6 [1]
    • (Документ 22) Х.С.М. Кокстер, Регулярные и полурегулярные многогранники I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Однородные заполнители пространств)
    • (Документ 24) Х.С.М. Кокстер, Правильные и полурегулярные многогранники III, [Math. Zeit. 200 (1988) 3-45]
КосмосСемья / /
E2Равномерная черепица{3[3]}δ333Шестиугольный
E3Равномерно выпуклые соты{3[4]}δ444
E4Равномерные 4-соты{3[5]}δ55524-ячеечные соты
E5Равномерные 5-соты{3[6]}δ666
E6Равномерные 6-соты{3[7]}δ777222
E7Равномерные 7-соты{3[8]}δ888133331
E8Равномерные 8-соты{3[9]}δ999152251521
E9Равномерные 9-соты{3[10]}δ101010
Eп-1Униформа (п-1)-соты{3[n]}δппп1k22k1k21