WikiDer > Техника Sessile drop
Эта статья нужны дополнительные цитаты для проверка. (Ноябрь 2013) (Узнайте, как и когда удалить этот шаблон сообщения) |
В сидячая капля метод, используемый для характеристики твердого поверхностные энергиии, в некоторых случаях, аспекты поверхностной энергии жидкости. Основная предпосылка метода заключается в том, что при помещении капли жидкости с известной поверхностной энергией форма капли, в частности угол контакта, а известная поверхностная энергия жидкости - это параметры, которые можно использовать для расчета поверхностной энергии твердого образца. Жидкость, используемая для таких экспериментов, называется зондовой жидкостью, и требуется использование нескольких различных зондовых жидкостей.
Жидкость зонда
Поверхностная энергия измеряется в единицах Джоули на площадь, что в случае жидкостей эквивалентно поверхностному натяжению, измеренному в ньютоны за метр. Общая поверхностное натяжение/ энергия жидкости может быть получена различными способами, используя тензиометр или используя подвесной метод капли и метод максимального давления пузырька.
В интерфейсное напряжение на границе зондовой жидкости и твердой поверхности можно дополнительно рассматривать как результат различных типов межмолекулярные силы. Таким образом, поверхностные энергии можно подразделить в соответствии с различными взаимодействиями, которые их вызывают, например, поверхностная энергия из-за дисперсии (ван дер Ваальс силы водородная связь, полярные взаимодействия, кислотно-щелочные взаимодействия, так далее.). В технике сидящей капли часто бывает полезно использовать жидкости, которые, как известно, неспособны к некоторым из этих взаимодействий (см. Таблица 1). Например, поверхностное натяжение всех прямых алканы называется полностью дисперсионным, а все остальные компоненты равны нулю. Это удобно с алгебраической точки зрения, поскольку в некоторых случаях устраняет переменную и делает эти жидкости незаменимыми материалами для испытаний.
Общая поверхностная энергия, как для твердого тела, так и для жидкости, традиционно считается просто суммой рассматриваемых компонентов. Например, уравнение, описывающее подразделение поверхностной энергии на вклады дисперсионных взаимодействий и полярных взаимодействий, будет выглядеть следующим образом:
Где σS - полная поверхностная энергия твердого тела, σSD и σSп - соответственно дисперсионная и полярная составляющие поверхностной энергии твердого тела, σL - полное поверхностное натяжение / поверхностная энергия жидкости, а σLD и σLп - соответственно дисперсионная и полярная составляющие поверхностного натяжения.
В дополнение к методам тензиометра и подвесной капли в некоторых случаях может использоваться метод лежащей капли для разделения известной полной поверхностной энергии жидкости на ее компоненты. Это делается путем изменения вышеизложенной идеи путем введения эталонной твердой поверхности, которая, как предполагается, не способна к полярным взаимодействиям, таким как политетрафторэтилен (ПТФЭ).[1]
Угол контакта
Краевой угол определяется как угол, образованный пересечением границы раздела жидкость / твердое тело и границы раздела жидкость / воздух. Альтернативно его можно описать как угол между поверхностью твердого образца и касательной овальной формы капли на краю капли. Большой угол смачивания указывает на низкую поверхностную энергию твердого тела или химическое сродство. Это также называют низкой степенью смачивания. Низкий угол смачивания указывает на высокую поверхностную энергию твердого тела или химическое сродство, а также на высокую или иногда полную степень смачивания. Например, контактный угол равен нулю градусов будет иметь место, когда капля превратилась в плоскую лужу; это называется полным смачивание.
Измерение угла контакта
Гониометрический метод
Самый простой способ измерить угол смачивания неподвижной капли - с помощью гониометр угла контакта, что позволяет пользователю визуально измерить угол контакта. Капля наносится шприцем, который помещается над поверхностью образца, и камера высокого разрешения фиксирует изображение с профиля или вида сбоку. Затем изображение можно анализировать либо на глаз (с помощью транспортира), либо, чаще, измерять с помощью программного обеспечения для анализа изображений. Этот тип измерения называется измерением статического контактного угла.[2]
На угол смачивания влияет не только химический состав поверхности, но и ее шероховатость. Уравнение Юнга, которое является основой для краевого угла, предполагает однородную поверхность без шероховатости. В случае наличия шероховатости поверхности капля может находиться в состоянии Венцеля (однородное смачивание), состоянии Кэсси-Бакстера (гетерогенное смачивание) или в промежуточном состоянии. Шероховатость поверхности усиливает смачивание, вызванное химическим составом поверхности.[3]
Чтобы измерить гистерезис контактного угла, неподвижную каплю можно постепенно увеличивать в объеме. Максимально возможный угол контакта называется углом контакта опережения. Угол смачивания смачивания можно измерить, удалив объем капли до тех пор, пока не произойдет ее обезвоживание. Минимально возможный угол смачивания называется углом смачивания.[2] Гистерезис контактного угла - это разница между наступающим и отступающим контактным углом.[2]
Преимущества и недостатки
Преимущество этого метода, помимо его относительно простой природы, заключается в том, что при достаточно большой твердой поверхности несколько капель могут быть нанесены в различных местах на образце для определения неоднородности. Воспроизводимость конкретных значений краевого угла будет отражать неоднородность энергетических свойств поверхности. И наоборот, недостатком является то, что если размер образца достаточно велик только для одной капли, то будет трудно определить неоднородность или, следовательно, предположить однородность. Это особенно верно, потому что обычные коммерчески доступные гониометры не поворачивают камеру / заднюю подсветку, установленную относительно предметного столика, и, таким образом, могут показывать угол контакта только в двух точках: на правом и левом крае капли. В дополнение к этому, этому измерению препятствует присущая ему субъективность, поскольку расположение линий определяется либо пользователем, смотрящим на изображения, либо определением линий программным обеспечением для анализа изображений.
Метод Вильгельми
Альтернативным методом измерения краевого угла смачивания является метод Вильгельми, который использует какой-то чувствительный измеритель силы для измерения силы, которая может быть переведена в значение краевого угла смачивания. В этом методе небольшой пластинчатый образец рассматриваемого твердого тела, прикрепленный к рычагу измерителя силы, вертикально погружается в резервуар с пробной жидкостью (на самом деле конструкция стационарного измерителя силы должна иметь жидкость поднимается, а не опускается образец), и сила, прилагаемая к образцу жидкостью, измеряется измерителем силы. Эта сила связана с контактным углом следующим уравнением:
Где F - полная сила, измеренная силомером, Fб - сила плавучести, создаваемая твердым образцом, вытесняющим жидкость, я - смоченная длина, а σ - известное поверхностное натяжение жидкости.
Преимущества и недостатки
Преимущество этого метода заключается в том, что он достаточно объективен, и измерение дает данные, которые по своей природе усредняются по смоченной длине. Хотя это не помогает определить неоднородность, оно автоматически дает более точное среднее значение. Его недостатки, помимо того, что он более сложен, чем метод гониометра, включают тот факт, что образец подходящего размера должен быть получен с однородным поперечным сечением в направлении погружения, а длина смоченного материала должна быть измерена с некоторой точностью. Кроме того, этот метод подходит только в том случае, если обе стороны образца идентичны, иначе измеренные данные будут результатом двух совершенно разных взаимодействий.[4]
Строго говоря, это не метод сидячей капли, поскольку мы используем небольшой подводный бассейн, а не каплю. Однако расчеты, описанные в следующих разделах, которые были получены для отношения краевого угла смачивания неподвижной капли к поверхностной энергии, применимы также.
Определение поверхностной энергии
Пока поверхностная энергия условно определяется как работа, необходимая для создания единицы площади данной поверхности,[5] когда дело доходит до ее измерения методом покоящейся капли, поверхностная энергия не так хорошо определена. Значения, полученные с помощью метода лежащей капли, зависят не только от рассматриваемого твердого образца, но в равной степени от свойств используемой зондирующей жидкости, а также от конкретной теории, связывающей параметры друг с другом математически.
Существует множество таких теорий, разработанных разными исследователями. Эти методы различаются по нескольким параметрам, таким как вывод и условность, но, что наиболее важно, они различаются количеством компонентов или параметров, которые они могут анализировать. Более простые методы, содержащие меньшее количество компонентов, упрощают систему, объединяя поверхностную энергию в одно число, в то время как более строгие методы с большим количеством компонентов выводятся для различения различных компонентов поверхностной энергии. Опять же, общая поверхностная энергия твердых тел и жидкостей зависит от различных типов молекулярных взаимодействий, таких как дисперсионные (ван-дер-ваальсовы), полярные и кислотно-основные взаимодействия, и считается суммой этих независимых компонентов. Некоторые теории объясняют больше этих явлений, чем другие теории. Эти различия следует учитывать при принятии решения о том, какой метод подходит для данного эксперимента. Ниже приведены несколько часто используемых таких теорий.
Однокомпонентные теории
Теория Зисмана
В Зисман Теория - это простейшая из часто используемых теорий, так как это однокомпонентная теория, которая лучше всего подходит для неполярных поверхностей. Это означает, что полимерные поверхности, подвергшиеся воздействию термическая обработка, обработка коронным разрядом, плазменная очистка, или же полимеры которые содержат гетероатомы не поддаются этой конкретной теории, поскольку они имеют тенденцию, по крайней мере, несколько полярный. Теория Зисмана также имеет тенденцию быть более полезной на практике для поверхностей с более низкими энергиями.
Теория Зисмана просто определяет поверхностную энергию как равную поверхностной энергии жидкости с наивысшей поверхностной энергией, которая полностью смачивает твердое тело. То есть капля будет максимально рассеиваться, т.е. полное смачивание поверхности для этой жидкости и любых жидкостей с более низкой поверхностной энергией, но не для жидкостей с более высокой поверхностной энергией. Поскольку этой жидкостью для зонда гипотетически может быть любая жидкость, включая воображаемую жидкость, лучший способ определить поверхностную энергию методом Зисмана - это получить точки данных углов контакта для нескольких жидкостей зонда на рассматриваемой твердой поверхности, а затем построить график зависимости косинус этого угла относительно известной поверхностной энергии пробной жидкости. Построив график Зисмана, можно экстраполировать максимальную поверхностную энергию жидкости, реальную или гипотетическую, которая приведет к полному смачиванию образца с углом контакта ноль градусов.
Точность / прецизионность
Коэффициент линии (рис. 5) предполагает, что это довольно точный результат, однако это справедливо только для соединения этого конкретного твердого тела с этими конкретными жидкостями. В других случаях соответствие может быть не таким большим (например, в случае замены полиэтилена на поли (метилметакрилат), при этом линейный коэффициент результатов графика с использованием того же списка жидкостей будет значительно ниже). Этот недостаток является результатом того факта, что теория Зисмана рассматривает поверхностную энергию как один единственный параметр, а не учитывает тот факт, что, например, полярные взаимодействия намного сильнее, чем дисперсионные, и, следовательно, степень, в которой оно происходит по сравнению с другими сильно влияет на необходимые вычисления. По сути, это простая, но не особо надежная теория. Поскольку целью этой процедуры является определение гипотетических свойств жидкости, точность результата зависит от точности, с которой известны значения поверхностной энергии исследуемых жидкостей.
Двухкомпонентные теории
Теория Оуэнса / Вендта
Теория Оуэнса / Вендта[6] (после К. Дж. ван Осса и Джона Ф. Вендта) делит поверхностную энергию на две составляющие: поверхностную энергию, обусловленную дисперсионными взаимодействиями, и поверхностную энергию, обусловленную полярными взаимодействиями. Эта теория основана на комбинации Отношение Юнга, который связывает краевой угол с поверхностными энергиями твердого тела и жидкости и межфазным натяжением, и Уравнение Гуда (по Р. Дж. Гуду), который связывает межфазное натяжение с полярной и дисперсионной составляющими поверхностной энергии. Результирующее основное уравнение:
Обратите внимание, что это уравнение имеет вид у = mx + b, с:
- ;
- ;
- ; и
Таким образом, полярные и дисперсионные компоненты поверхностной энергии твердого тела определяются наклоном и точкой пересечения результирующего графика. Конечно, проблема в том, что для построения этого графика недостаточно знания поверхностной энергии зондирующей жидкости, поскольку необходимо знать, в частности, как она распадается на полярные и дисперсионные компоненты.
Для этого можно просто изменить процедуру в обратном порядке, проверив жидкость зонда против стандартного твердого вещества сравнения, не способного к полярным взаимодействиям, такого как ПТФЭ. Если угол смачивания лежащей капли жидкости зонда измеряется на поверхности ПТФЭ с:
основное уравнение сводится к:
Поскольку полное поверхностное натяжение жидкости уже известно, это уравнение определяет дисперсионную составляющую, а разница между полной и дисперсионной составляющими дает полярную составляющую.
Точность / прецизионность
Точность и прецизионность этого метода в значительной степени поддерживаются уровнем достоверности результатов для соответствующих комбинаций жидкость / твердое вещество (как показано, например, на рис. 6). Теория Оуэнса / Вендта обычно применима к поверхностям с низким зарядом и умеренной полярностью. Некоторыми хорошими примерами являются полимеры, содержащие гетероатомы, такие как ПВХ, полиуретаны, полиамиды, полиэфиры, полиакрилаты, и поликарбонаты
Теория Фаукса
Теория Фаукса (после Ф. М. Фаукса) выводится несколько иначе, чем теория Оуэнса / Вендта, хотя основное уравнение теории Фаукса математически эквивалентно уравнению Оуэнса и Вендта:
- +
Обратите внимание, что, разделив обе части уравнения на , восстанавливается уравнение принципа Оуэнса / Вендта. Таким образом, один из вариантов правильного определения составляющих поверхностной энергии остается прежним.
В дополнение к этому методу также можно просто провести испытания с использованием жидкостей без полярного компонента для их поверхностной энергии, а затем с жидкостями, которые имеют как полярные, так и дисперсионные компоненты, а затем линеаризовать уравнения (см. Таблица 1). Сначала выполняется стандартное измерение краевого угла смачивания неподвижной капли для рассматриваемого твердого тела и жидкости с полярными компонентами, равными нулю (; Второй шаг - использовать вторую пробную жидкость, которая имеет как дисперсионную, так и полярную составляющие ее поверхностной энергии, а затем решить для неизвестных алгебраически. Теория Фаукса обычно требует использования только двух пробных жидкостей, как описано выше, и рекомендуются следующие: дииодметан, который не должен иметь полярного компонента из-за его молекулярной симметрии, и воды, которая, как известно, является очень полярной жидкостью.
Точность / прецизионность
Хотя основное уравнение по существу идентично уравнению Оуэнса и Вендта, теория Фаукса в более широком смысле имеет несколько иные приложения. Поскольку она основана на принципах, отличных от принципов Оуэнса / Вендта, остальная информация, касающаяся теории Фаукса, связана с адгезия. Таким образом, она более применима к ситуациям, когда происходит адгезия, и в целом работает лучше, чем теория Оуэнса / Вендта, когда речь идет о более высоких поверхностных энергиях.[1]
Кроме того, существует расширенная теория Фаукса, основанная на тех же принципах, но делающая общую поверхностную энергию на сумму трех, а не двух компонентов: поверхностная энергия, обусловленная дисперсионными взаимодействиями, полярными взаимодействиями и водородными связями.
Теория Ву
Теория Ву (после Сухэн Ву) также по существу аналогична теориям Оуэнса / Вендта и Фаукса в том, что она делит поверхностную энергию на полярную и дисперсионную составляющие. Основное отличие состоит в том, что Ву использует гармонические средства а не геометрические средства известных поверхностных натяжений, и в дальнейшем применяется более строгая математика.
Точность / прецизионность
Теория Ву дает более точные результаты, чем две другие теории, особенно для высоких поверхностных энергий. Однако она страдает одним осложнением: из-за задействованной математики теория Ву дает два результата для каждого компонента, один из которых является истинным результатом, а другой - просто следствием математики. Проблема на данном этапе заключается в интерпретации истинного результата. Иногда это так же просто, как исключить результат, который не имеет физического смысла (отрицательная поверхностная энергия), или результат, который явно неверен в силу того, что он на много порядков больше или меньше, чем должен быть. Иногда интерпретация оказывается более сложной.
Теория Шульца
Теория Шульца (после Д. Л. Шульца) применима только для твердых тел очень высоких энергий. Опять же, это похоже на теории Оуэнса, Вендта, Фаукса и Ву, но разработано для ситуации, когда обычные измерения, необходимые для этих теорий, невозможны. В классе твердых тел с достаточно высокой поверхностной энергией большинство жидкостей полностью смачивают поверхность с краевым углом смачивания, равным нулю, и поэтому невозможно собрать полезные данные. Теория и процедура Шульца требуют нанесения неподвижной капли пробной жидкости на рассматриваемую твердую поверхность, но все это делается, пока система погружена в еще одну жидкость, а не на открытом воздухе. В результате более высокое «атмосферное» давление из-за окружающей жидкости заставляет каплю жидкости зонда сжиматься, так что возникает измеримый угол контакта.
Точность / прецизионность
Этот метод разработан, чтобы быть надежным там, где другие методы даже не дают каких-либо конкретных результатов. Как таковой, он незаменим, поскольку это единственный способ использовать метод покоящейся капли на твердых телах с очень высокой поверхностной энергией. Его главный недостаток состоит в том, что он намного сложнее как в математическом, так и в экспериментальном плане. Теория Шульца требует учета гораздо большего числа факторов, поскольку теперь наблюдается необычное взаимодействие жидкой фазы зонда с окружающей жидкостью.
Трехкомпонентные теории
Теория ван Осса
Теория ван Осса[7] разделяет поверхностную энергию твердых тел и жидкостей на три компонента. Он включает дисперсионную поверхностную энергию, как и раньше, и подразделяет полярную составляющую как сумму еще двух конкретных составляющих: поверхностная энергия, обусловленная кислый взаимодействия () и из-за основных взаимодействий (). Кислотный компонент теоретически описывает склонность поверхности к полярным взаимодействиям со второй поверхностью, которая имеет способность действовать щелочно, отдавая электроны. И наоборот, основной компонент поверхностной энергии описывает склонность поверхности к полярным взаимодействиям с другой поверхностью, которая действует кислотно, принимая электроны. Основное уравнение этой теории:
Опять же, лучший способ разобраться с этой теорией, как и с двухкомпонентными теориями, - это использовать по крайней мере три жидкости (можно использовать больше, чтобы получить больше результатов для статистических целей) - одна только с дисперсным компонентом ее поверхностной энергии (), только с дисперсионным и кислотным или основным компонентом (), и, наконец, жидкость с диспергирующим и основным или кислотным компонентами (в зависимости от того, что нет имеют ()), либо жидкость со всеми тремя компонентами () - и линеаризация результатов.
Естественно, более надежны, чем другие теории, особенно в случаях, когда существует большой дисбаланс между кислотными и основными компонентами полярной поверхностной энергии. Теория Ван Осса больше всего подходит для проверки поверхностной энергии неорганических, металлоорганических и поверхностно-содержащих ионов.
Наиболее существенная трудность применения теории Ван Осса заключается в том, что нет большого согласия в отношении набора эталонных твердых веществ, которые можно использовать для характеристики кислотных и основных компонентов потенциальных жидкостей для зондов.Однако есть некоторые жидкости, которые, как принято считать, имеют известные дисперсные / кислотные / основные компоненты относительно их поверхностной энергии. Два из них перечислены в Таблица 1.
Список распространенных жидкостей для зондов
Жидкость | Общее поверхностное натяжение (мДж / м2) | Дисперсный компонент (мДж / м2) | Полярная составляющая (мДж / м2) | Кислотный компонент (мДж / м2) | Базовый компонент (мДж / м2) |
---|---|---|---|---|---|
Формамид [8] | 58.0 | 39.0 | 19.0 | 2.28 | 16.72 |
Дииодметан | 50.8 | 50.8 | 0 | 0 | 0 |
Вода | 72.8 | 26.4 | 46.4 | 23.2 | 23.2 |
Потенциальные проблемы
Присутствие поверхностно-активных элементов, таких как кислород и сера, будет иметь большое влияние на измерения, полученные с помощью этого метода. Поверхностно-активные элементы будут существовать в более высоких концентрациях на поверхности, чем в объеме жидкости, а это означает, что общие уровни этих элементов должны тщательно контролироваться до очень низкого уровня. Например, присутствие только 50 частей на миллион серы в жидком чугуне снизит поверхностное натяжение примерно на 20%.[9]
Практическое применение
Техника сидячей капли имеет различные применения как для материаловедение и прямая характеристика. В общем, он полезен при определении поверхностного натяжения жидкостей с использованием эталонных твердых тел, аналогичный метод является Метод пленочного пузыря. Существуют различные другие конкретные приложения, которые можно подразделить в зависимости от того, какая из вышеперечисленных теорий наиболее вероятно применима к конкретным обстоятельствам:
Теория Зисмана в основном используется для поверхностей с низкой энергией и характеризует только полную поверхностную энергию. Таким образом, это, вероятно, наиболее полезно в случаях, которые напоминают обычное определение поверхностей, например, если инженер-химик хочет знать, какая энергия связана с изготовлением поверхности. Это также может быть полезно в тех случаях, когда поверхностная энергия оказывает некоторое влияние на спектроскопический техника, используемая на рассматриваемом твердом теле.
Двухкомпонентные теории, скорее всего, будут применимы к вопросам инженерии материалов о практических взаимодействиях жидкостей и твердых тел. Теория Фаукса, поскольку она больше подходит для твердых поверхностей с более высокими энергиями, и поскольку большая часть ее основана на теориях о адгезия, вероятно, будет подходить для характеристики взаимодействий, в которых твердые тела и жидкости имеют высокое сродство друг к другу, например, достаточно логично, клеи и клей покрытия. Теория Оуэнса / Вендта, которая имеет дело с твердыми поверхностями с низкой энергией, была бы полезна для характеристики взаимодействий, в которых твердые тела и жидкости нет имеют сильную близость друг к другу - например, эффективность гидроизоляция. Полиуретаны и ПВХ - хорошие примеры водостойких пластиков.
Теорию Шульца лучше всего использовать для характеристики поверхностей с очень высокой энергией, для которых другие теории неэффективны, и наиболее важным примером является голый металлы.
Теория Ван Осса наиболее подходит для случаев, когда взаимодействие кислоты и основания является важным фактором. Примеры включают пигменты, фармацевтические препараты, и бумага. В частности, примечательные примеры включают как бумагу, используемую для обычных целей печати, так и более специализированный случай лакмусовая бумага, который сам по себе используется для характеристики кислотности и основности.
Смотрите также
Рекомендации
- ^ а б Кристофер Руллисон, «Итак, вы хотите измерить поверхностную энергию?». Техническая записка Kruss Laboratories.
- ^ а б c Клегг, Карл. (2013). Угол контакта - это просто. раме-харт. С. 4–10, 40–47.
- ^ «Влияние шероховатости поверхности на угол смачивания и смачиваемость» (PDF).
- ^ Кристофер Руллисон, «Практическое сравнение методов, используемых для измерения углов смачивания жидкостей на непористых твердых телах». Техническая записка Kruss Laboratories № 303.
- ^ Оура К., Лифшиц В.Г., Саранин А.А., Зотов А.В., Катаяма М. (2001). Наука о поверхности: Введение. Springer-Verlag: Берлин, 233
- ^ Оуэнс, Д. К .; Вендт, Р. К. (1969). «Оценка свободной энергии поверхности полимеров». J. Appl. Polym. Наука. 13 (8): 1741–1747. Дои:10.1002 / app.1969.070130815.
- ^ Хорошо, Роберт Дж .; ван Осс, Карел Дж. (1992). «Современная теория краевых углов и составляющих поверхностных энергий водородных связей». Современные подходы к смачиваемости. Springer. С. 1–27.
- ^ Шан, Цзяньин; Флури, Маркус; Harsh, Джеймс Б.; Золларс, Ричард Л. (15 декабря 2008 г.). «Сравнение различных методов измерения углов смачивания почвенных коллоидов». Журнал коллоидной и интерфейсной науки. 328 (2): 299–307. Bibcode:2008JCIS..328..299S. Дои:10.1016 / j.jcis.2008.09.039.
- ^ Сешадри Ситхараман: основы металлургии, Woodhead Publishing in Materials, Кембридж, 2005.