WikiDer > Псевдопрям Эйлера
В арифметика, странный составной целое число п называется Псевдопрям Эйлера основать а, если а и п находятся совмещать, и
(куда мод относится к по модулю операция).
Мотивация для этого определения заключается в том, что все простые числа п удовлетворяют приведенному выше уравнению, которое можно вывести из Маленькая теорема Ферма. Теорема Ферма утверждает, что если п прост и взаимно прост с а, тогда ап−1 ≡ 1 (мод п). Предположим, что п> 2 простое число, то п можно выразить как 2q + 1 где q целое число. Таким образом, а(2q+1) − 1 ≡ 1 (модп), что обозначает а2q - 1 ≡ 0 (мод п). Это может быть учтено как (аq − 1)(аq + 1) ≡ 0 (мод. п), что эквивалентно а(п−1)/2 ≡ ± 1 (мод.п).
Уравнение можно проверить довольно быстро, что может быть использовано для вероятностных проверка на простоту. Эти тесты вдвое сильнее тестов, основанных на маленькой теореме Ферма.
Каждый Эйлер псевдопремия также Псевдопросто Ферма. Невозможно произвести точный тест на простоту, основанный на том, номер является псевдопервичным числом Эйлера, потому что существуют абсолютные псевдопространства Эйлера, числа, которые являются псевдопростыми числами Эйлера для каждой базы, взаимно простой. Абсолютные псевдопространства Эйлера - это подмножество абсолютных псевдопримесей Ферма, или Числа Кармайкла, а наименьшее абсолютное псевдопростое число Эйлера равно 1729 = 7×13×19.
Связь с псевдопростыми числами Эйлера – Якоби
Немного более сильное условие, что
куда п нечетная композиция, наибольший общий делитель из а и п равно 1 и (а/п) это Символ Якоби, является более распространенным определением псевдоперминала Эйлера. См., например, страницу 115 книги Коблица, перечисленную ниже, страницу 90 книги Ризеля или страницу 1003 из.[1]Обсуждение чисел в этой форме можно найти на Псевдопростое число Эйлера – Якоби. Абсолютных псевдопространств Эйлера – Якоби не существует.[1]:п. 1004
А сильное вероятное простое число test даже сильнее, чем тест Эйлера-Якоби, но требует тех же вычислительных усилий. Из-за этого преимущества перед тестом Эйлера-Якоби программное обеспечение для простого тестирования часто основывается на строгом тесте.
Реализация в Lua
функция EulerTest (k) a = 2 если к == 1 затем верните false elseif к == 2 затем верните истину еще если (modPow (а, (к-1) / 2, к) == Якоби (а, к)) тогда вернуть истину еще вернуть ложь конец конецконец
Примеры
п | Псевдопримеры Эйлера к основанию п |
1 | 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207, 209, 213, 215, 217, 219, 221, 225, 231, 235, 237, 243, 245, 247, 249, 253, 255, 259, 261, 265, 267, 273, 275, 279, 285, 287, 289, 291, 295, 297, 299, ... (все нечетные композиты) |
2 | 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 6601, 8321, 8481, ... |
3 | 121, 703, 1541, 1729, 1891, 2465, 2821, 3281, 4961, 7381, 8401, 8911, ... |
4 | 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ... |
5 | 217, 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, ... |
6 | 185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, ... |
7 | 25, 325, 703, 817, 1825, 2101, 2353, 2465, 3277, 4525, 6697, 8321, ... |
8 | 9, 21, 65, 105, 133, 273, 341, 481, 511, 561, 585, 1001, 1105, 1281, 1417, 1541, 1661, 1729, 1905, 2047, 2465, 2501, 3201, 3277, 3641, 4033, 4097, 4641, 4681, 4921, 5461, 6305, 6533, 6601, 7161, 8321, 8481, 9265, 9709, ... |
9 | 91, 121, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ... |
10 | 9, 33, 91, 481, 657, 1233, 1729, 2821, 2981, 4187, 5461, 6533, 6541, 6601, 7777, 8149, 8401, ... |
11 | 133, 305, 481, 645, 793, 1729, 2047, 2257, 2465, 4577, 4921, 5041, 5185, 8113, ... |
12 | 65, 91, 133, 145, 247, 377, 385, 1649, 1729, 2041, 2233, 2465, 2821, 3553, 6305, 8911, 9073, ... |
13 | 21, 85, 105, 561, 1099, 1785, 2465, 5149, 5185, 7107, 8841, 8911, 9577, 9637, ... |
14 | 15, 65, 481, 781, 793, 841, 985, 1541, 2257, 2465, 2561, 2743, 3277, 5185, 5713, 6533, 6541, 7171, 7449, 7585, 8321, 9073, ... |
15 | 341, 1477, 1541, 1687, 1729, 1921, 3277, 6541, 9073, ... |
16 | 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ... |
17 | 9, 91, 145, 781, 1111, 1305, 1729, 2149, 2821, 4033, 4187, 5365, 5833, 6697, 7171, ... |
18 | 25, 49, 65, 133, 325, 343, 425, 1105, 1225, 1369, 1387, 1729, 1921, 2149, 2465, 2977, 4577, 5725, 5833, 5941, 6305, 6517, 6601, 7345, ... |
19 | 9, 45, 49, 169, 343, 561, 889, 905, 1105, 1661, 1849, 2353, 2465, 2701, 3201, 4033, 4681, 5461, 5713, 6541, 6697, 7957, 8145, 8281, 8401, 9997, ... |
20 | 21, 57, 133, 671, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2761, 3201, 5461, 5473, 5713, 5833, 6601, 6817, 7999, ... |
21 | 65, 221, 703, 793, 1045, 1105, 2465, 3781, 5185, 5473, 6541, 7363, 8965, 9061, ... |
22 | 21, 69, 91, 105, 161, 169, 345, 485, 1183, 1247, 1541, 1729, 2041, 2047, 2413, 2465, 2821, 3241, 3801, 5551, 7665, 9453, ... |
23 | 33, 169, 265, 341, 385, 481, 553, 1065, 1271, 1729, 2321, 2465, 2701, 2821, 3097, 4033, 4081, 4345, 4371, 4681, 5149, 6533, 6541, 7189, 7957, 8321, 8651, 8745, 8911, 9805, ... |
24 | 25, 175, 553, 805, 949, 1541, 1729, 1825, 1975, 2413, 2465, 2701, 3781, 4537, 6931, 7501, 9085, 9361, ... |
25 | 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ... |
26 | 9, 25, 27, 45, 133, 217, 225, 475, 561, 589, 703, 925, 1065, 2465, 3325, 3385, 3565, 3825, 4741, 4921, 5041, 5425, 6697, 8029, 9073, ... |
27 | 65, 121, 133, 259, 341, 365, 481, 703, 1001, 1541, 1649, 1729, 1891, 2465, 2821, 2981, 2993, 3281, 4033, 4745, 4921, 4961, 5461, 6305, 6533, 7381, 7585, 8321, 8401, 8911, 9809, 9841, 9881, ... |
28 | 9, 27, 145, 261, 361, 529, 785, 1305, 1431, 2041, 2413, 2465, 3201, 3277, 4553, 4699, 5149, 7065, 8321, 8401, 9841, ... |
29 | 15, 21, 91, 105, 341, 469, 481, 793, 871, 1729, 1897, 2105, 2257, 2821, 4371, 4411, 5149, 5185, 5473, 5565, 6097, 7161, 8321, 8401, 8421, 8841, ... |
30 | 49, 133, 217, 341, 403, 469, 589, 637, 871, 901, 931, 1273, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 4081, 4097, 5729, 6031, 6061, 6097, 6409, 6817, 7657, 8023, 8029, 8401, 9881, ... |
Наименьшее псевдопростое число Эйлера до основания п
п | Наименьшая ВПСП | п | Наименьшая ВПСП | п | Наименьшая ВПСП | п | Наименьшая ВПСП |
1 | 9 | 33 | 545 | 65 | 33 | 97 | 21 |
2 | 341 | 34 | 21 | 66 | 65 | 98 | 9 |
3 | 121 | 35 | 9 | 67 | 33 | 99 | 25 |
4 | 341 | 36 | 35 | 68 | 25 | 100 | 9 |
5 | 217 | 37 | 9 | 69 | 35 | 101 | 25 |
6 | 185 | 38 | 39 | 70 | 69 | 102 | 133 |
7 | 25 | 39 | 133 | 71 | 9 | 103 | 51 |
8 | 9 | 40 | 39 | 72 | 85 | 104 | 15 |
9 | 91 | 41 | 21 | 73 | 9 | 105 | 451 |
10 | 9 | 42 | 451 | 74 | 15 | 106 | 15 |
11 | 133 | 43 | 21 | 75 | 91 | 107 | 9 |
12 | 65 | 44 | 9 | 76 | 15 | 108 | 91 |
13 | 21 | 45 | 133 | 77 | 39 | 109 | 9 |
14 | 15 | 46 | 9 | 78 | 77 | 110 | 111 |
15 | 341 | 47 | 65 | 79 | 39 | 111 | 55 |
16 | 15 | 48 | 49 | 80 | 9 | 112 | 65 |
17 | 9 | 49 | 25 | 81 | 91 | 113 | 21 |
18 | 25 | 50 | 21 | 82 | 9 | 114 | 115 |
19 | 9 | 51 | 25 | 83 | 21 | 115 | 57 |
20 | 21 | 52 | 51 | 84 | 85 | 116 | 9 |
21 | 65 | 53 | 9 | 85 | 21 | 117 | 49 |
22 | 21 | 54 | 55 | 86 | 65 | 118 | 9 |
23 | 33 | 55 | 9 | 87 | 133 | 119 | 15 |
24 | 25 | 56 | 33 | 88 | 87 | 120 | 77 |
25 | 217 | 57 | 25 | 89 | 9 | 121 | 15 |
26 | 9 | 58 | 57 | 90 | 91 | 122 | 33 |
27 | 65 | 59 | 15 | 91 | 9 | 123 | 85 |
28 | 9 | 60 | 341 | 92 | 21 | 124 | 25 |
29 | 15 | 61 | 15 | 93 | 25 | 125 | 9 |
30 | 49 | 62 | 9 | 94 | 57 | 126 | 25 |
31 | 15 | 63 | 341 | 95 | 141 | 127 | 9 |
32 | 25 | 64 | 9 | 96 | 65 | 128 | 49 |
Смотрите также
Рекомендации
- ^ а б Карл Померанс; Джон Л. Селфридж; Сэмюэл С. Вагстафф-мл. (Июль 1980 г.). «Псевдопреступности до 25 · 109" (PDF). Математика вычислений. 35 (151): 1003–1026. Дои:10.1090 / S0025-5718-1980-0572872-7. JSTOR 2006210.
- М. Коблиц, "Курс теории чисел и криптографии", Springer-Verlag, 1987.
- Х. Ризель, "Простые числа и компьютерные методы факторизации", Биркхойзер, Бостон, Массачусетс, 1985.