WikiDer > PSMB3
Субъединица протеасомы бета-3 типа, также известный как 20S протеасома субъединица бета-3, это белок что у людей кодируется PSMB3 ген.[5] Этот белок является одной из 17 основных субъединиц.[6] которые способствуют полной сборке 20S протеасома сложный. В частности, бета-субъединица протеасомы типа 2 вместе с другими бета-субъединицами собираются в два гептамерных кольца и впоследствии в протеолитическую камеру для деградации субстрата. Эукариотический протеасома распознает разлагаемые белки, включая поврежденные белки, для контроля качества белков или ключевые регуляторные белковые компоненты для динамических биологических процессов.
Структура
Экспрессия белка
Ген PSMB3 кодирует член семейства протеасом B-типа, также известного как семейство T1B, которое представляет собой бета-субъединицу ядра 20S. Псевдогены были идентифицированы на хромосомах 2 и 12.[7] Ген имеет 6 экзонов и расположен на полосе хромосомы 17q12. Субъединица протеасомы белка бета-типа 3 человека имеет размер 23 кДа и состоит из 205 аминокислот. Рассчитанная теоретическая pI этого белка составляет 6,14.
Комплексная сборка
В протеасома представляет собой мультикаталитический протеиназный комплекс с высокоупорядоченной структурой ядра 20S. Эта бочкообразная структура ядра состоит из 4 уложенных в осевом направлении колец из 28 неидентичных субъединиц: каждое из двух концевых колец образовано 7 альфа-субъединицами, а два центральных кольца образованы 7 бета-субъединицами. Каждая из трех бета-субъединиц (бета1, бета2 и бета5) содержит протеолитический активный сайт и имеет различные субстратные предпочтения. Протеасомы в высокой концентрации распределяются по эукариотическим клеткам и расщепляют пептиды в АТФ / убиквитин-зависимом процессе нелизосомного пути.[8][9]
Функция
Функции белка поддерживаются его третичной структурой и его взаимодействием с ассоциирующими партнерами. Как одна из 28 субъединиц 20S протеасомы, субъединица протеасомы бета-типа 3 вносит вклад в формирование протеолитической среды для деградации субстрата. Доказательства кристаллических структур изолированного 20S протеасомного комплекса демонстрируют, что два кольца бета-субъединиц образуют протеолитическую камеру и поддерживают все свои активные центры протеолиза внутри камеры.[9] Одновременно кольца альфа-субъединиц образуют вход для субстратов, попадающих в протеолитическую камеру. В инактивированном 20S протеасомном комплексе ворота во внутреннюю протеолитическую камеру охраняются N-концевыми хвостами специфической альфа-субъединицы. Этот уникальный дизайн структуры предотвращает случайное столкновение между протеолитическими активными центрами и белковым субстратом, что делает процесс деградации белка хорошо регулируемым.[10][11] 20S протеасомный комплекс сам по себе обычно функционально неактивен. Протеолитическая способность 20S ядерной частицы (CP) может быть активирована, когда CP связывается с одной или двумя регуляторными частицами (RP) на одной или обеих сторонах альфа-колец. Эти регуляторные частицы включают протеасомные комплексы 19S, протеасомные комплексы 11S и т. Д. После ассоциации CP-RP подтверждение определенных альфа-субъединиц изменится и, следовательно, вызовет открытие входных ворот субстрата. Помимо RP, протеасомы 20S также могут быть эффективно активированы другими мягкими химическими обработками, такими как воздействие низких уровней додецилсульфата натрия (SDS) или NP-14.[11][12]
Клиническое значение
Протеасома и ее субъединицы имеют клиническое значение по крайней мере по двум причинам: (1) нарушенная комплексная сборка или дисфункциональная протеасома может быть связана с патофизиологией конкретных заболеваний, и (2) они могут использоваться в качестве мишеней для лекарств для терапевтических целей. вмешательства. В последнее время были предприняты дополнительные усилия по рассмотрению протеасомы для разработки новых диагностических маркеров и стратегий. Улучшенное и всестороннее понимание патофизиологии протеасомы должно привести к клиническому применению в будущем.
Протеасомы образуют ключевой компонент для убиквитин-протеасомная система (UPS) [13] и соответствующий контроль качества клеточного белка (PQC). Протеин убиквитинирование и последующие протеолиз и деградация протеасомами являются важными механизмами в регуляции клеточный цикл, рост клеток и дифференцировка, транскрипция генов, сигнальная трансдукция и апоптоз.[14] Впоследствии нарушение сборки и функции протеасомного комплекса ведет к снижению протеолитической активности и накоплению поврежденных или неправильно свернутых белков. Такое накопление белка может способствовать патогенезу и фенотипическим характеристикам нейродегенеративных заболеваний,[15][16] сердечно-сосудистые заболевания,[17][18][19] воспалительные реакции и аутоиммунные заболевания,[20] и системные реакции на повреждение ДНК, приводящие к злокачественные новообразования.[21]
Несколько экспериментальных и клинических исследований показали, что аберрации и нарушение регуляции UPS вносят вклад в патогенез нескольких нейродегенеративных и миодегенеративных заболеваний, включая Болезнь Альцгеймера,[22] болезнь Паркинсона[23] и Болезнь Пика,[24] Боковой амиотрофический склероз (ALS),[24] болезнь Хантингтона, Болезнь Крейтцфельдта-Якоба, и болезни двигательных нейронов, полиглутаминовые (PolyQ) заболевания, Мышечные дистрофии[25] и несколько редких форм нейродегенеративных заболеваний, связанных с слабоумие.[26] В рамках убиквитин-протеасомная система (UPS) протеасома поддерживает гомеостаз сердечного белка и, таким образом, играет важную роль в сердечной ишемический травма, повреждение,[27] гипертрофия желудочков[28] и сердечная недостаточность.[29] Кроме того, накапливаются доказательства того, что UPS играет важную роль в злокачественной трансформации. Протеолиз UPS играет важную роль в ответах раковых клеток на стимулирующие сигналы, которые имеют решающее значение для развития рака. Соответственно, экспрессия гена за счет деградации факторы транскрипции, Такие как p53, с-июн, c-Fos, NF-κB, c-Myc, HIF-1α, MATα2, STAT3, стерол-регулируемые связывающие элементы белки и рецепторы андрогенов Все они контролируются ИБП и, таким образом, участвуют в развитии различных злокачественных новообразований.[30] Кроме того, UPS регулирует деградацию продуктов гена-супрессора опухолей, таких как аденоматозный полипоз кишечной палочки (APC) при колоректальном раке, ретинобластома (Rb). и опухолевый супрессор фон Хиппеля – Линдау (ВХЛ), а также ряд протоонкогены (Раф, Мой с, Myb, Rel, Src, Мос, ABL). ИБП также участвует в регуляции воспалительных реакций. Эта активность обычно объясняется ролью протеасом в активации NF-κB, который дополнительно регулирует экспрессию провоспалительных цитокины Такие как TNF-α, ИЛ-β, Ил-8, молекулы адгезии (ICAM-1, VCAM-1, Р-селектин) и простагландины и оксид азота (НЕТ).[20] Кроме того, UPS также играет роль в воспалительных реакциях в качестве регуляторов пролиферации лейкоцитов, в основном за счет протеолиза циклинов и деградации CDK ингибиторы.[31] Наконец, аутоиммунное заболевание пациенты с SLE, Синдром Шегрена и ревматоидный артрит (RA) преимущественно демонстрируют циркулирующие протеасомы, которые можно использовать в качестве клинических биомаркеров.[32]
Взаимодействия
PSMB3 был показан взаимодействовать с PLK1.[33]
Рекомендации
- ^ а б c ENSG00000275903 GRCh38: Ensembl release 89: ENSG00000277791, ENSG00000275903 - Ансамбль, Май 2017
- ^ а б c GRCm38: выпуск Ensembl 89: ENSMUSG00000069744 - Ансамбль, Май 2017
- ^ "Справочник человека по PubMed:". Национальный центр биотехнологической информации, Национальная медицинская библиотека США.
- ^ "Ссылка на Mouse PubMed:". Национальный центр биотехнологической информации, Национальная медицинская библиотека США.
- ^ Нотванг Х. Г., Тамура Т., Танака К., Итихара А. (октябрь 1994 г.). «Анализ последовательности и межвидовые сравнения трех новых субъединиц протеасомы человека, HsN3, HsC7-I и HsC10-II, ограничивают потенциальные протеолитические остатки активного сайта». Biochimica et Biophysica Acta (BBA) - Структура и экспрессия гена. 1219 (2): 361–8. Дои:10.1016/0167-4781(94)90060-4. PMID 7918633.
- ^ Наряду с альфа-субъединицами 1-7, конститутивными бета-субъединицами 1-7 и индуцибельными субъединицами, включая beta1i, beta2i, beta5i
- ^ «Ген Entrez: субъединица протеасомы PSMB3 (просома, макропаин), бета-тип, 3».
- ^ Coux O, Tanaka K, Goldberg AL (1996). «Структура и функции протеасом 20S и 26S». Ежегодный обзор биохимии. 65: 801–47. Дои:10.1146 / annurev.bi.65.070196.004101. PMID 8811196.
- ^ а б Томко Р.Дж., Хохштрассер М (2013). «Молекулярная архитектура и сборка протеасомы эукариот». Ежегодный обзор биохимии. 82: 415–45. Дои:10.1146 / annurev-biochem-060410-150257. ЧВК 3827779. PMID 23495936.
- ^ Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (апрель 1997 г.). «Структура протеасомы 20S из дрожжей при разрешении 2,4 А». Природа. 386 (6624): 463–71. Bibcode:1997Натура.386..463G. Дои:10.1038 / 386463a0. PMID 9087403. S2CID 4261663.
- ^ а б Гролль М., Байорек М., Келер А., Мородер Л., Рубин Д.М., Хубер Р., Гликман М.Х., Финли Д. (ноябрь 2000 г.). «Закрытый канал в частицу ядра протеасомы». Структурная биология природы. 7 (11): 1062–7. Дои:10.1038/80992. PMID 11062564. S2CID 27481109.
- ^ Zong C, Gomes AV, Drews O, Li X, Young GW, Berhane B, Qiao X, French SW, Bardag-Gorce F, Ping P (август 2006 г.). «Регуляция сердечных 20S протеасом мышей: роль ассоциирующих партнеров». Циркуляционные исследования. 99 (4): 372–80. Дои:10.1161 / 01.RES.0000237389.40000.02. PMID 16857963.
- ^ Клейгер Г., мэр Т. (июнь 2014 г.). «Опасное путешествие: экскурсия по убиквитин-протеасомной системе». Тенденции в клеточной биологии. 24 (6): 352–9. Дои:10.1016 / j.tcb.2013.12.003. ЧВК 4037451. PMID 24457024.
- ^ Гольдберг А.Л., Штейн Р., Адамс Дж. (Август 1995 г.). «Новое понимание функции протеасом: от архебактерий до разработки лекарств». Химия и биология. 2 (8): 503–8. Дои:10.1016/1074-5521(95)90182-5. PMID 9383453.
- ^ Сулистио Ю.А., Хиз К. (январь 2015 г.). «Убиквитин-протеасомная система и дерегуляция молекулярных шаперонов при болезни Альцгеймера». Молекулярная нейробиология. 53 (2): 905–31. Дои:10.1007 / s12035-014-9063-4. PMID 25561438. S2CID 14103185.
- ^ Ортега З, Лукас Дж.Дж. (2014). «Участие убиквитин-протеасомной системы в болезни Хантингтона». Границы молекулярной неврологии. 7: 77. Дои:10.3389 / fnmol.2014.00077. ЧВК 4179678. PMID 25324717.
- ^ Сандри М., Роббинс Дж. (Июнь 2014 г.). «Протеотоксичность: недооцененная патология при сердечных заболеваниях». Журнал молекулярной и клеточной кардиологии. 71: 3–10. Дои:10.1016 / j.yjmcc.2013.12.015. ЧВК 4011959. PMID 24380730.
- ^ Дрюс О., Тэгтмайер Х (декабрь 2014 г.). «Нацеливание на убиквитин-протеасомную систему при сердечных заболеваниях: основа для новых терапевтических стратегий». Антиоксиданты и редокс-сигналы. 21 (17): 2322–43. Дои:10.1089 / ars.2013.5823. ЧВК 4241867. PMID 25133688.
- ^ Ван З.В., Хилл Д.А. (февраль 2015 г.). «Контроль качества протеина и метаболизм: двунаправленный контроль в сердце». Клеточный метаболизм. 21 (2): 215–26. Дои:10.1016 / j.cmet.2015.01.016. ЧВК 4317573. PMID 25651176.
- ^ а б Карин М., Дельхас М. (февраль 2000 г.). «Киназа I каппа B (IKK) и NF-каппа B: ключевые элементы провоспалительной передачи сигналов». Семинары по иммунологии. 12 (1): 85–98. Дои:10.1006 / smim.2000.0210. PMID 10723801.
- ^ Ермолаева М.А., Даховник А., Шумахер Б. (сентябрь 2015 г.). «Механизмы контроля качества в ответах на клеточные и системные повреждения ДНК». Обзоры исследований старения. 23 (Pt A): 3–11. Дои:10.1016 / j.arr.2014.12.009. ЧВК 4886828. PMID 25560147.
- ^ Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E., Marambaud P (июль 2000 г.). «Роль протеасомы в болезни Альцгеймера». Biochimica et Biophysica Acta (BBA) - Молекулярная основа болезни. 1502 (1): 133–8. Дои:10.1016 / s0925-4439 (00) 00039-9. PMID 10899438.
- ^ Чунг К.К., Доусон В.Л., Доусон TM (ноябрь 2001 г.). «Роль убиквитин-протеасомного пути в болезни Паркинсона и других нейродегенеративных расстройствах». Тенденции в неврологии. 24 (11 Прил.): S7–14. Дои:10.1016 / s0166-2236 (00) 01998-6. PMID 11881748. S2CID 2211658.
- ^ а б Икеда К., Акияма Х., Араи Т., Уэно Х., Цучия К., Косака К. (июль 2002 г.). «Морфометрическая переоценка системы двигательных нейронов болезни Пика и бокового амиотрофического склероза с деменцией». Acta Neuropathologica. 104 (1): 21–8. Дои:10.1007 / s00401-001-0513-5. PMID 12070660. S2CID 22396490.
- ^ Мэтьюз К.Д., Мур С.А. (январь 2003 г.). «Конечностно-поясная мышечная дистрофия». Текущие отчеты по неврологии и неврологии. 3 (1): 78–85. Дои:10.1007 / s11910-003-0042-9. PMID 12507416. S2CID 5780576.
- ^ Майер Р.Дж. (март 2003 г.). «От нейродегенерации к нейрогомеостазу: роль убиквитина». Новости и перспективы наркотиков. 16 (2): 103–8. Дои:10.1358 / dnp.2003.16.2.829327. PMID 12792671.
- ^ Кализа Дж., Пауэлл С.Р. (февраль 2013 г.). «Убиквитиновая протеасомная система и ишемия миокарда». Американский журнал физиологии. Сердце и физиология кровообращения. 304 (3): H337–49. Дои:10.1152 / ajpheart.00604.2012. ЧВК 3774499. PMID 23220331.
- ^ Предмор Дж. М., Ван П., Дэвис Ф., Бартолон С., Вестфол М. В., Дайк Д. Б., Пагани Ф., Пауэлл С. Р., Дэй С.М. (март 2010 г.). «Дисфункция убиквитиновых протеасом при гипертрофических и дилатационных кардиомиопатиях». Тираж. 121 (8): 997–1004. Дои:10.1161 / cycleaha.109.904557. ЧВК 2857348. PMID 20159828.
- ^ Пауэлл SR (июль 2006 г.). «Убиквитин-протеасомная система в физиологии и патологии сердца». Американский журнал физиологии. Сердце и физиология кровообращения. 291 (1): H1 – H19. Дои:10.1152 / ajpheart.00062.2006. PMID 16501026.
- ^ Адамс Дж (апрель 2003 г.). «Возможности ингибирования протеасом при лечении рака». Открытие наркотиков сегодня. 8 (7): 307–15. Дои:10.1016 / с 1359-6446 (03) 02647-3. PMID 12654543.
- ^ Бен-Нерия Y (январь 2002 г.). «Регуляторные функции убиквитинирования в иммунной системе». Иммунология природы. 3 (1): 20–6. Дои:10.1038 / ni0102-20. PMID 11753406. S2CID 26973319.
- ^ Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T., Burmester GR, Kloetzel PM, Feist E (октябрь 2002 г.). «Циркулирующие протеасомы являются маркерами повреждения клеток и иммунологической активности при аутоиммунных заболеваниях». Журнал ревматологии. 29 (10): 2045–52. PMID 12375310.
- ^ Фэн Й, Лонго Д.Л., Феррис Д.К. (январь 2001 г.). «Поло-подобная киназа взаимодействует с протеасомами и регулирует их активность». Рост и дифференциация клеток. 12 (1): 29–37. PMID 11205743.
дальнейшее чтение
- Coux O, Tanaka K, Goldberg AL (1996). «Структура и функции протеасом 20S и 26S». Ежегодный обзор биохимии. 65: 801–47. Дои:10.1146 / annurev.bi.65.070196.004101. PMID 8811196.
- Goff SP (август 2003 г.). «Смерть от дезаминирования: новая система ограничения хозяина для ВИЧ-1». Клетка. 114 (3): 281–3. Дои:10.1016 / S0092-8674 (03) 00602-0. PMID 12914693. S2CID 16340355.
- Расмуссен Х. Х., ван Дамм Дж., Пуйпе М., Гессер Б., Селис Дж. Э., Вандекеркхов Дж. (Декабрь 1992 г.). «Микропоследовательности 145 белков, записанные в базе данных двумерных гелевых белков нормальных эпидермальных кератиноцитов человека». Электрофорез. 13 (12): 960–9. Дои:10.1002 / elps.11501301199. PMID 1286667. S2CID 41855774.
- Кристенсен П., Йонсен А.Х., Уерквиц В., Танака К., Хендил КБ (декабрь 1994 г.). «Человеческие протеасомные субъединицы из 2-мерных гелей, идентифицированные частичным секвенированием». Сообщения о биохимических и биофизических исследованиях. 205 (3): 1785–9. Дои:10.1006 / bbrc.1994.2876. PMID 7811265.
- Сигер М., Феррелл К., Франк Р., Дубиль В. (март 1997 г.). «ВИЧ-1 tat ингибирует 20 S протеасому и ее активацию, опосредованную 11 S». Журнал биологической химии. 272 (13): 8145–8. Дои:10.1074 / jbc.272.13.8145. PMID 9079628.
- Маккаскер Д., Джонс Т., Шир Д., Троусдейл Дж. (Октябрь 1997 г.). «Генетические отношения генов, кодирующих бета-субъединицы протеасомы человека и протеасомный комплекс PA28». Геномика. 45 (2): 362–7. Дои:10.1006 / geno.1997.4948. PMID 9344661.
- Мадани Н., Кабат Д. (декабрь 1998 г.). «Эндогенный ингибитор вируса иммунодефицита человека в лимфоцитах человека преодолевается вирусным белком Vif». Журнал вирусологии. 72 (12): 10251–5. Дои:10.1128 / JVI.72.12.10251-10255.1998. ЧВК 110608. PMID 9811770.
- Саймон Дж. Х., Гаддис, Северная Каролина, Фушье Р. А., Малим М. Х. (декабрь 1998 г.). «Доказательства недавно открытого клеточного фенотипа против ВИЧ-1». Природа Медицина. 4 (12): 1397–400. Дои:10.1038/3987. PMID 9846577. S2CID 25235070.
- Эленич Л.А., Нанди Д., Кент А.Э., МакКласки Т.С., Круз М., Айер М.Н., Вудворд Е.С., Конн К.В., Очоа А.Л., Гинзбург Д.Б., Монако Дж.Дж. (сентябрь 1999 г.). «Полная первичная структура протеасом 20S мыши». Иммуногенетика. 49 (10): 835–42. Дои:10.1007 / s002510050562. PMID 10436176. S2CID 20977116.
- Малдер LC, Muesing MA (сентябрь 2000 г.). «Деградация интегразы ВИЧ-1 по пути правила N-конца». Журнал биологической химии. 275 (38): 29749–53. Дои:10.1074 / jbc.M004670200. PMID 10893419.
- Фэн Й, Лонго Д.Л., Феррис Д.К. (январь 2001 г.). «Поло-подобная киназа взаимодействует с протеасомами и регулирует их активность». Рост и дифференциация клеток. 12 (1): 29–37. PMID 11205743.
- Шихи AM, Гэддис NC, Чой JD, Malim MH (август 2002 г.). «Выделение человеческого гена, который подавляет инфекцию ВИЧ-1 и подавляется вирусным белком Vif». Природа. 418 (6898): 646–50. Bibcode:2002Натура.418..646С. Дои:10.1038 / природа00939. PMID 12167863. S2CID 4403228.
- Хуанг X, Зайферт У., Зальцманн У., Хенкляйн П., Прейсснер Р., Хенке В., Сийтс А.Дж., Клётцель П.М., Дубиль В. (ноябрь 2002 г.). «Сайт RTP, общий для белка Tat ВИЧ-1 и альфа-регуляторной субъединицы 11S, имеет решающее значение для их воздействия на функцию протеасом, включая процессинг антигена». Журнал молекулярной биологии. 323 (4): 771–82. Дои:10.1016 / S0022-2836 (02) 00998-1. PMID 12419264.
- Гаддис Н.С., Чертова Э., Шихи А.М., Хендерсон Л.Е., Малим М.Х. (май 2003 г.). «Комплексное исследование молекулярного дефекта в vif-дефицитных вирионах вируса иммунодефицита человека 1 типа». Журнал вирусологии. 77 (10): 5810–20. Дои:10.1128 / JVI.77.10.5810-5820.2003. ЧВК 154025. PMID 12719574.
- Lecossier D, Bouchonnet F, Clavel F, Hance AJ (май 2003 г.). «Гипермутация ДНК ВИЧ-1 в отсутствие белка Vif». Наука. 300 (5622): 1112. Дои:10.1126 / science.1083338. PMID 12750511. S2CID 20591673.
- Чжан Х., Ян Б., Померанц Р. Дж., Чжан С., Аруначалам СК, Гао Л. (июль 2003 г.). «Цитидиндезаминаза CEM15 индуцирует гипермутацию во вновь синтезированной ДНК ВИЧ-1». Природа. 424 (6944): 94–8. Bibcode:2003Натура.424 ... 94Z. Дои:10.1038 / природа01707. ЧВК 1350966. PMID 12808465.
- Мангеат Б., Турелли П., Карон Г., Фридли М., Перрин Л., Троно Д. (июль 2003 г.). «Широкая антиретровирусная защита человеческого APOBEC3G посредством летального редактирования возникающих обратных транскриптов». Природа. 424 (6944): 99–103. Bibcode:2003Натура 424 ... 99М. Дои:10.1038 / природа01709. PMID 12808466. S2CID 4347374.